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Abstract

In this work, by defining Peiffer pairings in the Moore complex of a simplicial algebgroid, we
give the close relationship between the category of simplicial algebroids with Moore complex
of length 1 and that of internal categories in the category of R-algebroids.
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1 Introduction

The notion of crossed module was introduced by Whitehead in [11] as algebraic models for homotopy
connected 2-types. The observation that simplicial groups whose Moore complex is of length 1 are
equivalent to Whitehead’s crossed modules is well known and has led to us to give an algebroid
version of this result. Groups are generalised to groupoids, and using this generalisation, Mosa
in [9], explored that algebras are appropriately generalised to R-algebroids. An R-category A,
[7], is a category equipped with an R-module structure on each hom set such that the category
composition is an R-bilinear map, where R is a commutative ring. It can be seen that an R-category
is a category which is enriched over a closed category of R-modules. G.H. Mosa in his Ph.D. thesis,
[9], has studied the notions of R-algebroids, crossed modules of R-algebroids and some internal
categories in the category of algebras. T. Porter, in [10], has defined R-algebroids in a bit different
way from [9]. Using Porter’s definition, an R-algebroid A on a fixed set of objects A0, and the hom
sets are disjoint family of R-modules. He has also proven that in the category of R-algebroids over
a fixed set, any internal category gives an internal groupoid.

The concept of Peiffer elements in a simplicial group comes from the observation of Brown and
Loday’s result, [3], about the normalisation of simplical groups. Assume that G is a simplicial
group and N = {Nn} is its Moore complex. Brown and Loday proved that if G2 is generated by
degenerate elements, then ∂2(N2) = [ker d0, ker d1]. By killing this normal subgroup, it is obtained a
crossed module ∂2 : N1 → N0 and an internal category in the category of groups. Arvasi and Porter,
in [1, 2], studied Peiffer elements in simplicial commutative algebras, and they applied their results
to crossed modules of commutative algebras and categorical algebras and gave a reformulation of
Brown Loday’s results for commutative algebras.

In this study, using the ideas given by Arvasi and Porter in [1, 2], we give the Peiffer pairings in
the Moore complex of a simplicial R-algebroid and explore the close relationship between simplicial
algebroids with Moore complex of length 1 and internal categories in the category of R-algebroids
by killing some degenarate elements in the Moore complex of a simplicial algebroid. We can say
that this result is an algebroid version of the results of Brown-Loday and Arvasi-Porter.
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2 Preliminaries

In this section, we give some basic information. We begin, by defining R-algebroids and their
morphisms. Mitchell, in [7, 8] has given a categorical definition of R−algebroids.

Definition 2.1. Let R be a commutative ring. An R−category C is a category equipped with an
R−module structure on each hom set such that the composition is R−bilinear. An R-functor is a
functor θ : C → C ′ between R−categories such that the maps

` : C(c1, c2)→ C ′(θc1, θc2)

are R−linear. An R-category with one object is an associative R-algebra.

The following statements can be found in [9].
An R-algebroid C is a small R-category. Lets elaborate this definition as follows; We shall give

the definition of an R-algebroid C on a set of objects C0 in the following way.
Recall that C is called a directed graph over a set C0 if there are given functions, ε0, ε1 : C → C0,

e : C0 → C called respectively the source, target and unit maps, such that ε1e = ε0e = idC0
. Then,

we can write
C(x, y) = {c ∈ C : ε0(c) = x, ε1(c) = y},

and if a ∈ C(x, y), we also write a : x→ y.
An R−algebroid C is a directed graph over C0 together with for all x, y, z ∈ C0;
i) an R−module structure on each hom set C(x, y),
ii) an R−bilinear function, called composition or multiplication,

◦ : C(x, y)× C(y, z) −→ C(x, z)
(a , b) 7−→ a ◦ b

The only axioms are that composition is associative, and that the elements e(x), x ∈ C0 act as
identities for composition.

Example 2.2. If C0 has exactly one object, then an R−algebroid over C0 is an R−algebra.

Example 2.3. If C is an R−algebroid over C0 and x ∈ C0, then C(x, x) = C(x) is an R−algebra.

Definition 2.4. If A and B are two R−algebroids on the objects set A0 and B0 respectively, the
tensor product A⊗R B over A0 ×B0 of the algebroids A and B is the family of R−modules

{A(x, y)⊗R B(u, v) : x, y ∈ A0, u, v ∈ B0}

with composition
(a′ ⊗ b′) ◦ (a⊗ b) = a′ ◦ a⊗ b′ ◦ b.

2.1 C−Structures

An extension E of C by A, C and A being both R−algebroids on common objects set C0, is a
sequence

E : A
c−→ B

π−→ C

where A = ker π and each c ∈ C is the image of some b ∈ B.
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If E is split by e : C → B, (πe = idC), then we say E is a C−structure on A.
Let C be an R−algebroid on C0. If x, y ∈ C0, a multiplication m from x to y on C is a pair

(mL,mR) of natural transformations

mL : C(y,−) −→ C(x,−)
mR : C(−, x) −→ C(−, y)

such that if c1 : t→ x, c2 : y → z, one has

c1 ◦mL(c2) = mR(c2) ◦ c1.

Given the multiplications m : w → x, and n : y → z, and w, x, y, z ∈ C0 then, the multiplications
m,n are called permutable if

mL(z)nR(x) = nR(w)mL(y)

and
nL(x)mR(z) = mR(y)nL(w).

The set of multiplications is said to be permutable if its elements are pairwise permutable. For
any R−algebroid C, let M(C) be a R−algebroid with identities. Then, the composition defines a
morphism of R−algebroids

θC : C →M(C)

with imθC a permutable set of multiplications.

2.2 Semi-direct product of R−algebroids

Given a C−structure on A, one may get a morphism

θK : C →M(A)

with imθK permutable. We shall denote θR(c)a = a · c and θL(c)a = c · a. Let A and C be
R−algebroids and A has a C−structure. The semi-direct product of these R−algebroids denoted

C
∼
×A, by

(C
∼
×A)(x, y) = C(x, y)×A(x, y)

and
(c1, a1) ◦ (c2, a2) = (c1 ◦ c2, a1 · c2 + c1 · a2 + a1 ◦ a2)

for (c1, a1) ∈ C
∼
×A(x, y) and (c2, a2) ∈ (C

∼
×A)(y, z).

That this composition is associative follows from the fact that imθ is permutable. Therefore

the semi-direct product C
∼
×A is an R−algebroid on objects set C0 × C0.

3 Simplicial algebroids

A simplicial algebroid E is a simplicial object in the category of R−algebroids, that is, the face
and degeneracy maps satisfying the usual simplicial identities and they are identities on objects set
and each Ei is an R−algebroid on a common objects set denoted by O, and the maps di and sj
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are R−algebroid morphisms. A simplicial R-algebroid it is useful to give a diagram for a simplicial
algebroid as follows:

(E, 0) : · · · En

�� ��

E2

�� ��

//
//// E1

�� ��

////
d0,d1 //

oooo
E0

s0
oo

�� ��
0 0 0 0

A Moore complex of a simplicial algebroid (NE, ∂) is a complex of R−algebroids, where each
NEi is an R−algebroid on a common objects set O, and NEi is defined by

NEi =

n−1⋂
i=0

ker di.

We shall denote the category of simplicial algebroids by SimpAlgoid. We say that the Moore
complex NE of a simplicial algebroid E is of length k if NEn = 0 for all n ≥ k + 1, so that a
Moore complex of length k is also of length l for l ≥ k. We denote thus the category of simplicial
algebroids with Moore complex of length n by SimpAlgoid≤n.

3.1 Peiffer pairings generate for simplicial algebroids

The following terminology and notation is derived from [1, 2].
For the ordered set [n] = {0 < 1 < ... < n}, let αni : [n + 1] → [n] be the increasing surjective

map given by;

αni (j) =

{
j if j ≤ i,
j − 1 if j > i.

Let S(n, n− r) be the set of all monotone increasing surjective maps from [n] to [n− r]. This can
be generated from the various αni by composition. The composition of these generating maps is
subject to the following rule: αjαi = αi−1αj , j < i. This implies that every element α ∈ S(n, n−r)
has a unique expression as α = αi1 ◦ αi2 ◦ ... ◦ αir with 0 ≤ i1 < i2 < ... < ir ≤ n − 1, where the
indices ik are the elements of [n] such that {i1, ..., ir} = {i : α(i) = α(i+ 1)}. We thus can identify
S(n, n − r) with the set {(ir, ..., i1) : 0 ≤ i1 < i2 < ... < ir ≤ n − 1}. In particular, the single
element of S(n, n), defined by the identity map on [n], corresponds to the empty 0-tuple ( )denoted
by ∅n. Similarly the only element of S(n, 0) is (n− 1, n− 2, ..., 0). For all n ≥ 0, let

S(n) =
⋃

0≤r≤n

S(n, n− r).

We say that α = (ir, ...i1) < β = (js, ..., j1) in S(n)
if i1 = j1, ..., ik = jk but ik+1 > jk+1, (k ≥ 0) or if i1 = j1, ..., ir = jr and r < s. This makes

S(n) an ordered set.
Now, we shall give the algebroid version of usual Peiffer pairings defined on algebras (or similarly

on groups). We shall recall briefly the construction of a family of R-linear algebroid morphisms.
Let E be a simplicial algebroid. Define a set P (n) consisting of pairs of elements (α, β) from S(n)
with α ∩ β = ∅ and β < α where α = (ir, ...i1), β = (js, ...j1) ∈ S(n). The R-linear algebroid
morphisms that we will need,

{Cα,β : NEn−#α(a, b)⊗NEn−#β(b, c)→ NEn(a, c) : (α, β) ∈ P (n), n ≥ 0}
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are given as composites:

Cα,β(xα ⊗ yβ) = pµ(sα ⊗ sβ)(xα ⊗ yβ)

= p(sα(xα) ◦ sβ(yβ))

= (1− sn−1dn−1)...(1− s0d0)(sα(xα) ◦ sβ(yβ)),

where xα ∈ NEn−#α(a, b) and yβ ∈ NEn−#β(b, c), then sα(xα) ∈ NEn(a, b) and sβ(yβ) ∈
NEn(b, c) and thus, sα(xα) ◦ sβ(yβ) ∈ NEn(a, c) since degeneracy maps are identity on objects,
and

sα = sir ...si1 : NEn−#α(a, b)→ En(a, b), sβ = sjs ...sj1 : NEn−#β(b, c)→ En(b, c),

p : En → NEn is defined by composite projections p = pn−1...p0 with pj = 1 − sjdj for j =
0, 1, ..., n − 1 and the composition ◦ is algebroid composition (or multiplication). Here O is the
object set and for any object a ∈ O, we denote e(a) = 1a : a→ a or only 1.

We will now consider that the algebroid ideal In in En such that generated by all elements of
the form;

Cα,β(xα ⊗ yβ)

where xα ∈ NEn−#α(a, b) and yβ ∈ NEn−#β(b, c) and for all (α, β) ∈ P (n) and a, b, c ∈ O.

Proposition 3.1. Let E be simplicial algebroid and n > 0, and Dn the algebroid ideal in En
generated by degenerate elements. We suppose En = Dn, and let In be the algebroid ideal gen-
erated by elements of the form Cα,β(xα ⊗ yβ) with (α, β) ∈ P (n) where xα ∈ NEn−#α(a, b), yβ ∈
NEn−#β(b, c) with 1 ≤ r, s ≤ n. Then, ∂n(NEn) = ∂n(In).

4 Simplicial algebroids and internal categories in the category of
algebroids

Porter, in [10], has defined an equivalence between the category of internal categories within
R−algebroids and the category of crossed modules of R−algebroids. In fact, this equivalence
is the additive form Brown and Spencer [4] theorem about cat-groups and crossed modules. In
this section, we will construct an equivalence between simplicial algebroids with Moore complex of
length 1, and internal categories within R−algebroids. Now, recall that an internal category in the
category of R−algebroids, denoted by (D,C, s, t, e, ◦, ∗), is an internal directed graph (D,C, s, t, e)
such that D and C are R−algebroids on common objects set O, and for two operations ◦, ∗ on D,
the interchange law;

(α ◦ β) ∗ (γ ◦ δ) = (α ∗ γ) ◦ (β ∗ δ)

holds whenever either side is defined.
We give the main theorem of this section.

Theorem 4.1. The category of simplicial algebroids with Moore complex of length 1 is equivalent
to the category of internal categories in the category of R−algebroids.

Proof. Let E be a simplicial algebroid. Consider the Moore complex (NE,∂). From this complex,
we must have a C−structure, and we must construct an internal object. Let C = NE0 = E0 the
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R−algebroid, first term in the Moore complex, and B = E1, A = ker d0 = NE1. Then, we have a
NE0−structure in the following diagram;

NE1
i // E1

d0 //
NE0

s0
oo ,

where, d0s0 = idNE0 . Then, the R−algebroid NE1 has a NE0−structure. Therefore, we can define
semi-direct product algebroid on the objects set O ×O by

(NE0

∼
×NE1)(x, y) = NE0(x, y)×NE1(x, y)

for all x, y ∈ O. Thus, we can define a NE0−structure;

NE1
i // NE0

∼
×NE1

π //
NE0

s
oo

where i(a) = (0xy , a), π(c, a) = c and s(c) = (c, 0xy) for c ∈ NE0(x, y) and a ∈ NE1(x, y). We will
construct from this structure an internal directed graph. We get a diagram;

NE0

∼
×NE1

ε0 //

ε1
//
NE0

e
oo

where ε0 is the natural projection given by ε0(c, a) = c and ε1(c, a) = c+ ∂1a, and e is the section
by e(c) = (c, 0xy). This internal directed graph can be given by a partially defined composition as
follows

(c, a) ∗ (c′, a′) = (c, a+ a′),

where, ε0(c′, a′) = c′ = c+ ∂1a = ε1(c, a), and (c, a), (c′, a′) ∈ (NE0

∼
×NE1)(x, y) and ∂1 : NE1 →

NE0 is a map restricted to face map d1. Not that e(c) acts as a left identity with e(c + ∂1a) as
right identity, i.e., we almost have a category object in the category of R−algebroids. The second
operation “ ◦ ” on

NE0

∼
×NE1

is given by
(c1, a1) ◦ (c2, a2) = (c1 ◦ c2, a1 · c2 + c1 · a2 + a1 ◦ a2)

for (c1, a1) ∈
(
NE0

∼
×NE1

)
(x, y) and (c2, a2) ∈

(
NE0

∼
×NE1

)
(y, z), where a1 · c2 = a1 ◦ s0(c2)

and c1 · a2 = s0(c1) ◦ a2.
Associativity is immediate; in fact the only thing to check is that ∗ is a morphism ofR−algebroids,

i.e., that the interchange law

(α ◦ β) ∗ (γ ◦ δ) = (α ∗ γ) ◦ (β ∗ δ)

holds whenever either side is defined.
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If (c, a) ∈ (NE0

∼
×NE1)(x, y), then c+∂1a also is from x to y, since d1 is the identity on objects,

so (c, a), (c + ∂1a, a
′) : x → y in NE0

∼
× NE1 and (d, b), (d + ∂1b, b

′) : y → z. Since, the length of
Moore complex is 1, we have following

∂2(NE2) = 0.

Therefore, for a ∈ NE1(x, y) and b ∈ NE1(y, z), we can write a ◦ b − a ◦ s0d1(b) ∈ ∂2(NE2) and
since ∂2(NE2) = 0 we have

a ◦ b− a ◦ s0d1(b) = 0xz ,

or
a ◦ b = a ◦ s0d1(b).

By using these statements, we calculate;

(α ◦ β) ∗ (γ ◦ δ) = [(c, a) ◦ (d, b)] ∗ [(c+ ∂1a, a
′) ◦ (d+ ∂1b, b

′)]
= [(c ◦ d, a ◦ s0(d) + s0(c) ◦ b+ a ◦ b)]
∗[((c+ ∂1a) ◦ (d+ ∂1b) , a′ ◦ s0(d) + a′ ◦ s0d1(b)+
s0(c) ◦ b′ + s0d1(a) ◦ b′ + a′ ◦ b′)]

= (c ◦ d, a ◦ s0(d) + s0(c) ◦ b+ a ◦ b+ a′ ◦ s0(d)+
a′ ◦ s0d1(b) + s0(c) ◦ b′ + s0d1(a) ◦ b′ + a′ ◦ b′)

= (c ◦ d, a ◦ s0(d) + s0(c) ◦ b+ a ◦ b+ a′ ◦ s0(d)+
a′ ◦ b+ s0(c) ◦ b′ + a ◦ b′ + a′ ◦ b′) since ∂2(NE2) = 0

= (c ◦ d, (a+ a′) ◦ s0(d) + s0(c) ◦ (b+ b′) + (a+ a′) ◦ (b+ b′))
= (c, a+ a′) ◦ (d, b+ b′)
= [(c, a) ∗ (c+ ∂1a, a

′)] ◦ [(d, b) ∗ (d+ ∂1b, b
′)]

= (α ∗ γ) ◦ (β ∗ δ).

Thus, we have an internal category in the category of R−algebroids,

(NE0

∼
×NE1, NE0, s, t, e, ◦, ∗).

Now, we can define a functor from the category of simplicial algebroids with Moore complex of
length 1, to the category of internal categories in the category of R−algebroids;

Θ : SimpAlgoid→ ICR.

Here ICR is the category of internal categories in the category of R−algebroids.
Conversely, let (D,C, s, t, e, ◦, ∗) be any internal category within R−algebroids. Let A = ker s,

then, we have

A // D
s //

C
e
oo .

This gives a C−structure on A, explicitly we have

c · a = e(c) ◦ a

and
a · c = a ◦ e(c).
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Let E0 = C and E1(x, y) = C
∼
×A(x, y), where D is isomorphic to C

∼
×A by the isomorphism;

Θ : D → C
∼
×A

d 7−→ (s(d), d− e(s(d)))

We define face and degeneracy maps in the following way, between E1(x, y) = (C
∼
× A)(x, y) and

E0(x, y) = C(x, y);
d0(c, a) = c+ t(a)

d1(c, a) = c

and
s0(c) = (c, 0xy)

for all c ∈ C(x, y) and a ∈ A(x, y). It can be easily showed that these maps satisfy the usual
simplicial identities. Thus, we have a 1−truncated simplicial algebroid with the morphisms

C
∼
×A

d0,d1 //// A
s0

oo

There is a coskeleton functor Cosk, from the category of k−truncated simplicial algebroids to
simplicial algebroids. Consequently, we get the following diagram

SimpAlgoid
Θ // ICR

ww
Tr1 SimpAlgoid

Cosk

ii

and this enables us to define a functor

S : ICR →SimpAlgoid.

It can be easily verified that the length of the Moore complex of this simplicial algebroids is 1, and
we see that the compositions SΘ and ΘS are identity. Thus, the proof is complete. q.e.d.

Consequently, we showed that the category of internal categories in the category of R-algebroids
is equivalent to that of simplicial algebroids with Moore complex of length 1.
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